A. Always irrational
B. Always an integer
C. Always rational
D. None of these
The product of two rational numbers is always rational because the product of two fractions (or integers) is another fraction (or integer). Rational numbers are closed under multiplication, meaning multiplying two rationals results in another rational number.
A. 100 m
B. 500 m
C. 1000 m
D. 2000 m
A. 30
B. 32
C. 28
D. 26
A. 25.5
B. 50.
C. 50.5
D. None of these
A. 0.000000648
B. 0.0000648
C. 0.00000648
D. None of these
A. 126
B. 42
C. 168
D. 52
A. 60%
B. 90%
C. 80%
D. None of these
A. 11.0
B. 11.3
C. 11.4
D. 11.5
A. 4000
B. 4400
C. 5000
D. 5400
A. Which can be divided by Even Numbers
B. Which can be divided by Number 1 & by itself Number
C. Which can be divided by Odd Numbers
D. Which can be divided by any Number
A. 9
B. 8
C. 10
D. None of these
A. 5/36
B. 4/36
C. 1/12
D. 1/2
A. 3.2 cm
B. 6.9 cm
C. 1.82 cm
D. 2.54 cm
A. 7
B. 9
C. 12
D. 8
A. 282,589,933 − 3
B. 282,589,933 − 1
C. 282,589,933 − 5
D. None of these
A. $43-M
B. $53-M
C. $63-M
D. $73-M
A. 0
B. -2
C. 2
D. 1
A. a=b
B. a ≠ b
C. Cannot be evaluated
D. None
A. 1.5 months
B. 40 days
C. 2 months
D. 50 days
A. 30
B. 45
C. 60
D. 50
A. 8%
B. 10%
C. 16%
D. 20%
A. x = 4, y = 14
B. x = 6, y = 12
C. x = 3, y = 3
D. None of these
A. Alternendo
B. Componendo
C. Invertendo
D. None of these
A. 360°
B. 380°
C. 180°
D. None of these
A. Parallel
B. Tangent
C. Perpendicular
D. None of these
A. Ortho-centre
B. In-centre
C. Circum-centre
D. None of these